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Dissipation range spectra for incompressible magnetohydrodynamic turbulence are derived for
isotropic viscosity � and resistivity �. The spectra are obtained from heuristic closures of spectral
transfer correlations for cases with Pm=� /��1, where Pm is the magnetic Prandtl number.
Familiar inertial range power laws are modified by exponential factors that dominate spectral falloff
in the dissipation range. Spectral forms are sensitive to alignment between flow and magnetic field.
There are as many as four Kolmogorov wavenumbers that parametrize the transition between
inertial and dissipative behavior and enter corresponding spectral forms. They depend on the values
of the viscosity and resistivity and on the nature of alignment in inertial and dissipation ranges.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3200901�

I. INTRODUCTION

Observations of magnetic turbulence in the solar wind,1,2

the aurora,3 and laboratory plasmas4 have accessed high fre-
quencies, or equivalently, large wavenumbers. The spectra
appear to have breaks, with ensuing ranges of steeper power
law �increasing spectral index�. The range beyond the first
break is sometimes labeled a dissipation range �see Ref. 3 for
example�. The designation “dissipative” should be taken as
tentative, indicating a regime of different physics �relative to
lower frequencies� that may be due to dissipation, or to some
new set of inertial effects. For example, near the Larmor
radius scale, inertial-range magnetohydrodynamic �MHD�
turbulence transitions to inertial-range kinetic Alfvén wave
turbulence with a steeper spectral index, provided fluctua-
tions remain inertial.5–7 However, it is well known that in
Navier–Stokes turbulence the transition to the dissipation
range at the Kolmogorov scale leads to a range of exponen-
tial falloff. Exponential falloff can be represented as a se-
quence of power law spectra with ever increasing spectral
index.8 Over a wavenumber range limited to something like
a decade on a log-log plot, exponential falloff can appear to
be a sequence of two power laws connected at a knee.

As a reference for observed spectra in wavenumber
ranges where the dissipation becomes dynamically important
and falloff becomes exponential, it would be useful to have a
spectrum model for MHD with that form of decay. Using
model spectra with exponential falloff in such ranges is more
physically meaningful for characterizing observed spectral
variation than sequences of steeper power laws. Exponen-
tially decaying dissipation range spectra for MHD have re-
ceived only passing mention,9,10 and, as far as we know, have
not been derived. We begin here the process by considering
dissipation range spectrum for isotropic viscosity and resis-
tivity. This is a starting point only. There are other dissipative
effects beyond isotropic viscosity and resistivity, including
anisotropic viscosity, fluctuations driven by velocity space
anisotropies, and kinetic dissipation from Landau damping
and cyclotron resonance. There is growing evidence that

such effects are present in observed scales for the solar wind,
aurora, and other plasmas with evidence of kinetic dissipa-
tion. Ultimately, therefore, kinetic effects must be incorpo-
rated into dissipation range analyses.

However, in developing dissipation range analysis for
magnetic turbulence, there are complications intrinsic to
magnetofluids that first warrant consideration under the sim-
pler MHD fluid model with isotropic viscosity. These com-
plications include the differences in behavior associated with
variations of the magnetic Prandtl number Pm and the effect
of alignment between magnetic field and flow.11 These ef-
fects already add complexity in inertial scales. For example,
unaligned turbulence produces an inertial range spectrum
that decays as k−5/3,12 whereas self-similar scale dependent
alignment yields k−3/2.11 A third power law, k−11/3, applies to
the magnetic spectrum above the nominal resistively dissi-
pated wavenumber in turbulence with Pm�1.13,14 We exam-
ine the transition of these power laws to exponentially dissi-
pated spectrum ranges consistent with the relevant physics.
The spectra we derive offer a reference for MHD computa-
tion, which remains the most widely solved model for mag-
netic turbulence. Moreover, the exercise yields a fluid
dissipation-range benchmark to which the spectral features
of kinetic effects can be compared.

Alignment must be considered in dissipation range
analysis because it affects the strength of the nonlinearity.
This, in turn, affects the amount of energy that can be dissi-
pated in the time scale of nonlinear spectral transfer between
spatial scales. Alignment in the inertial range is postulated to
be scale dependent in such a way that it leads to a self-
similar depletion of the nonlinearity and a reduction in spec-
tral falloff from k−5/3 to k−3/2.11 The postulated alignment has
been observed in simulation15 and in solar wind data.16

Simulations also indicate that alignment ceases to be scale
dependent in the dissipation range, with the mean angle be-
tween fields that holds at the Kolmogorov scale remaining
frozen in for smaller scales.17 These results are empirical and
not understood from first principles. Consequently we evalu-
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ate dissipation range spectra for turbulence that is both
aligned and unaligned. These two cases must be calculated
even for the aligned turbulence described in Ref. 17 because
dissipation occurs for scales both larger and smaller than the
Kolmogorov scale, while the nature of alignment changes
from scale dependent to scale independent. Alignment and
nonalignment have been related to inertial structures that are
sheetlike and filamentlike respectively. Formulation of dissi-
pation range spectra allows us to draw inferences regarding
the nature and anisotropy of dissipative structures.

The magnetic Prandtl number is the ratio of viscosity to
resistivity and is a critical parameter for magnetic dissipation
range turbulence. Regimes with Pm�1 obviously have un-
equal dissipation rates and distinct wavenumbers for which
the kinetic and magnetic energies transition away from iner-
tial ranges. More subtly, the transition from the inertial
ranges for Pm=1 is amenable to treatments that are similar
to those of Navier–Stokes turbulence, whereas the transition
for Pm�1 must account for nonlocal wavenumber
interactions.13,14 These considerations enter the closure of the
third order correlations that govern energy transfer.

Even for Navier–Stokes turbulence, with its single form
of dissipation and its unique Kolmogorov scale, there are a
rather large number of dissipation range theories arising from
different approaches to the closure problem.18–24 These ap-
proaches employ a variety of disparate modeling techniques
and approximations, from mean-shear representations for
turbulent straining18 to statistical closure theory,22 to name
just two. All yield spectra of the form

E�k� = a�2/3k−5/3 exp�− b�k/kdis��� , �1�

where k is the wavenumber, � is the turbulent dissipation
rate, kdis is the Kolmogorov wavenumber, and a and b are
constants of order unity. The value of � depends on the tur-
bulence model and associated closure approximation and
ranges from 1 to 2. For data that do not extend more than a
decade in k beyond kdis, all exponents with 1���2 provide
reasonable fits to measured spectrum shapes.25 This paper
does not attempt to address the complex problem of which of
seven closure calculations of the Navier–Stokes problem
might best apply to magnetic turbulence. Rather, we restrict
ourselves to simple, physically transparent closures, check-
ing them against known asymptotic limits, so that we can
focus instead on how magnetic properties like alignment and
unequal dissipation of turbulent fields carry into the dissipa-
tion range.

For Pm=1 a simple hydrodynamic closure21 can be ex-
tended to MHD and allows examination of aligned and un-
aligned turbulence. The theory is based on a physically ap-
pealing closure assumption that amounts to having
transferred spectral power at k decrease by the energy lost to
dissipation during an eddy turnover time. In hydrodynamics
this results in a spectrum with �=4 /3. An equivalent spectral
law was derived by Corrsin19 and Pao.20 In certain analyses
of hydrodynamic data, �=4 /3 appears to best capture the
large Reynolds number limit.25 However, other analyses in-
dicate �=1 is preferable.26 The hydrodynamic closure speci-
fies the inertial power law as an asymptote for long wave-
lengths and recovers the spectrum across the full dynamic

range 0�k��. It yields an expression for the Kolmogorov
wavenumber as the scale at which exponential behavior
dominates falloff. The expression reproduces the results of
the standard derivation. The analysis can be applied in a
straightforward fashion to unaligned turbulence. For aligned
turbulence the analysis can be adapted by supplying the scale
dependence of the alignment angle. We calculate the dissipa-
tion range spectrum of aligned turbulence using the empiri-
cal alignment angle of MHD simulations.17,27 Because align-
ment reduces the strength of the nonlinearity, it also changes
the Kolmogorov wavenumber. Hence the closures of aligned
and unaligned turbulence lead to separate Kolmogorov
wavenumbers.

For Pm�1, the treatment of the dissipation range must
account for the dissipative balance and nonlocal transfer that
yields the k−11/3 spectrum for magnetic energy above the re-
sistive Kolmogorov wavenumber.13,14 The hydrodynamic
closure21 is too simple, but its description of the attenuation
of spectrally transferred energy by dissipation can be used
with the dissipative balance and nonlocal analysis of Refs.
13 and 14 to impose the proper asymptotic behavior as the
wavenumber approaches the resistive Kolmogorov wave-
number from above. The result is again a spectrum over the
full dynamic scale range with dissipative and inertial limits.
This spectrum carries imprints of the separate Kolmogorov
wavenumbers for viscosity and resistivity. Moreover, if there
is inertial alignment, there are Kolmogorov wavenumbers for
all combinations of alignment and dissipation.

For Pm�1, the heuristic closures used in the other two
limits are inadequate. In the hydrodynamic closure the trans-
fer rate stresses that govern the dissimilar spectra for mag-
netic field and flow are represented by the same dimensional
form. To treat this regime, the stresses must be modeled in a
way that accounts for differences between v · �B ·��B,
B · �v ·��B, and B · �B ·��v, where B and v are the turbulent
magnetic and flow fields. This requires the analysis of mo-
ment equations beyond the energy moments considered here.
This more difficult limit is left to future work.

This work is organized as follows. In Sec. II we describe
the dissipation range theory, which is based on analysis of
spectral energy transfer in the presence of dissipation. In Sec.
III we derive MHD dissipation range spectra for Pm�1 and
Pm=1, and for aligned and unaligned turbulence. Section IV
gives conclusions.

II. DISSIPATION RANGE ENERGY TRANSFER

The resistive incompressible MHD equations are

�v

�t
+ v · �v − B · �B = − ��p +

B2

2
� + ��2v , �2�

�B

�t
+ v · �B − B · �v = ��2B , �3�

where � is the resistivity, � is the isotropic viscosity, and the
remaining symbols have their usual meanings. A factor
1 /�4	
 has been absorbed into the variable B, where 
 is
the mass density. The form of the dissipation is idealized,
even in the context of fluid theory. Analysis of collisional
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processes yields anisotropic viscosity when there is a strong
guide field.28 Nonetheless, Eqs. �2� and �3� are a standard
model, especially for simulations of magnetic turbulence.

In the inertial range the nonlinearities transfer energy
spectrally to higher wavenumber with essentially no loss of
energy, i.e., the scales are sufficiently large to make the dis-
sipative terms negligible. In the dissipation range the nonlin-
earities continue to transfer energy spectrally, but now, vis-
cous and resistive energy dissipation rates exceed the
nonlinear rates of energy transfer. The result is that energy
available for spectral transfer is attenuated as it progresses to
higher wavenumber at rates governed by the viscosity and
resistivity. This is expressed by

− 2�Ev�k�k2 =
dTv

dk
, �4�

− 2�EB�k�k2 =
dTB

dk
, �5�

where Ev�k� and EB�k� are the spectral power densities asso-
ciated with flow and magnetic field fluctuation, defined by
Ev�k�=�v2 exp�ik ·x�d3x and EB�k�=�B2 exp�ik ·x�d3x. The
spectral energy transfer rates Tv�k� and TB�k� are

Tv�k� =	 
v · �v · ��v − v · �B · ��B�exp�ik · x�d3x , �6�

TB�k� =	 
B · �v · ��B − B · �B · ��v�exp�ik · x�d3x . �7�

If the transfer rates can be expressed as functions of Ev�k�
and EB�k�, Eqs. �4� and �5� can be solved for the form of the
spectral densities. The matter of expressing Tv and TB in
terms of Ev and EB is the closure problem mentioned in the
Introduction.

A. Pm=1

We consider first situations in which the magnetic
Prandtl number Pm is unity, i.e., �=�. This regime is fre-
quently assumed in computation. It makes sense to use
Elsässer variables, Z+=v+B and Z−=v−B. Adopting a com-
pact notation Z� for the two variables, the two MHD equa-
tions are compactly expressed as

�Z�

�t
+ Z� · �Z� = − ��p +

B2

2
� + ��2Z�. �8�

The transfer attenuation balances are

− 2�E�k2 =
dT�

dk
, �9�

where E��k�=�Z�
2 exp�ik ·x�d3x. The hydrodynamic closure

we use21 treats the problem dimensionally, leading us to
write

T��k� = Z�
2 Z�
kk . �10�

Because Eq. �10� is written in terms of vector magni-
tudes, whereas the transfer rates involves vector products
Z� ·�Z�, there is an alignment factor 
k. If this factor is

unity for all k, we will refer to the fields as unaligned. In this
situation Z+ and Z− are perpendicular, an orientation that
maximizes the nonlinearity. For 
k=1 the inertial range
spectrum of Goldreich and Sridhar12 are recovered. In fact,
to recover the Goldreich–Sridhar spectrum, 
k need not be
unity, but only constant �independent of k�. In the so-called
aligned case, 
k�1 and decreases with k, yielding a deple-
tion of the nonlinearities and nonlinear transfer rates.11 In the
inertial range the scale-dependent reduction is assumed to be
self-similar across scales. This means it is proportional to a
power of k. If 
k is proportional to k−1/4 the reduction repro-
duces the spectrum of Iroshnikov and Kraichnan.29,30 How-
ever, unlike the assumptions made in Refs. 29 and 30, the
fluctuations are anisotropic. In addition to the usual stretch-
ing along the mean field, eddies are oblate in the plane per-
pendicular to the mean field. This produces the partial align-
ment of Z+ and Z− responsible for the depletion of the
nonlinearity as described by 
k.

11 Evidence for this align-
ment has been observed in simulations.17,27

We now consider the closure of Eq. �10�. In the proce-
dure of Ref. 21, Z�

2 is replaced by E��k�k, while the remain-
ing factors are expressed as functions of k, using the inertial
Obukov balance ��=T��k�� that yields the inertial range
spectrum. This step effectively builds into the analysis the
proper inertial limiting behavior for wavenumbers that are
much smaller than the Kolmogorov wavenumber. For un-
aligned turbulence, this means 
k=1 and Z�=�1/3 /k1/3,
where � is the inertial range dissipation rate. Therefore,

T� = E��k��1/3k5/3 �unaligned� . �11�

This closure does not represent a unique prescription for
writing T� in terms of E�. For example, alternate closures
can be generated by geometrically splitting Z�

2 into a part
that is converted to E� and a part that is written as a function
of k using the inertial range spectrum

T��k� = Z�
2 Z�k = �Z�

2 ���Z�
2 �1−�Z�k = E�

� �k��1−2�/3k5�/3.

�12�

Only for �=1 is an exponential spectrum generated. More-
over, this is the only choice that asymptotes to the correct
inertial range spectrum for scales that are larger than the
Kolmogorov scale. These important physical features there-
fore dictate the choice �=1.

For aligned turbulence the closure is handled similarly,
again with �=1. Here, however, 
k is different from unity
and must be specified as a function of k. The inertial-range
Iroshnikov–Kraichnan spectrum, E=�1/2VA

1/2 /k3/2, implies

that Z�=�1/4VA
1/4 /k1/4, where VA=B0 /�4	
. Both of these

relations are recovered from the Obukov inertial balance if


k = �1/4/VA
3/4k1/4. �13�

This scale-dependent angle is formally an inertial range con-
struct. It is not derived from first principles, but postulated as
the form that yields the Iroshnikov–Kraichnan power law
observed in simulations. Thus it is an empirical relation.
Without a theoretical base, it is not obvious how to theoreti-
cally predict the behavior of the angle 
k in the dissipation
range. The simplest assumption would be that the nonlinear
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physics that reduces 
k with increasing k as described by Eq.
�13� continues unchanged into the dissipation range. This is
the essence of the hydrodynamic dissipation range as de-
scribed by Eq. �1�, because the self-similar power-law factor
continues in force even as its decay is overwhelmed by the
exponential factor. However, it is also possible that the addi-
tional complexities of MHD break this symmetry. There is
evidence for the latter possibility in the simulations of Ref.
17, which access the dissipation range. Figure 2 of Ref. 17
shows that the reduction in 
k saturates at the wavenumber
k=k�al

of the transition to the dissipation range, asymptoting
to the constant value


k = �1/4/VA
3/4k�al

1/4 for k � k�al
. �14�

Here, the transition wavenumber k�al
has a subscript to indi-

cate the type of dissipation that induces the transition and
whether or not the inertial fluctuations are aligned. This
wavenumber will naturally emerge from the spectrum calcu-
lation in the next section as the wavenumber at which dissi-
pative forces become equal to inertial forces. This makes k�al
a Kolmogorov wavenumber. We will not attempt to address
whether the dissipation range is fully resolved in Ref. 17.
Rather, we will take the results at face value and calculate
the spectrum consistent with the variation shown in Fig. 2 of
Ref. 17. As shown in the next section it is trivial to modify
the spectrum for the hypothetical case in which Eq. �13�
continues to hold in the dissipation range.

To determine T��k� consistent with Eq. �13� for k
�k�al

and Eq. �14� for k�k�al
, we use Eq. �10� for T��k�.

The field Z� is determined from the Obukov balance �
=Z�

3 
kk. This yields

T��k� =
E��k��1/2k3/2

VA
1/2 for k � k�al

, �15�

T��k� =
E��k��1/2k5/3

VA
1/2k�al

1/6 for k � k�al
, �16�

for aligned turbulence.
The unaligned and aligned cases of MHD turbulence in-

cluded above represent two paradigms for inertial range
spectra that dominated thinking about MHD turbulence over
the years. We consider the type of fluctuation structure they
represent in the inertial and dissipation ranges. Because 
k

=1 implies Z+�Z−, unaligned turbulence has comparable
scales k�

−1 in the plane perpendicular to the mean field. The
elongation of eddies along the field �k� �k�� yields struc-
tures that are filamentlike. With equal dissipation of v and B,
and the assumption that 
k=1 continues to hold in the dis-
sipation range, the structures remain filamentlike. For
aligned turbulence, Eq. �13� implies that the angle between
Z+ and Z− becomes smaller with increasing k, introducing a
small scale k�

−1
k in one direction in the plane perpendicular
to the mean field and k�

−1 in the other direction. The elonga-
tion along the field then yields sheetlike structures. Figure 2
of Ref. 17 indicates that the transverse aspect ratio of the
sheets becomes fixed in the dissipation range. Additional dis-
sipative effects in plasmas beyond simple resistivity and vis-

cosity, including Landau damping, gyroresonant damping,
and anisotropic viscosity, may modify fluctuation structure.

B. Pm<1

In Sec. II A we found closed expressions for T��k�, valid
for Pm=1. These expressions, both for unaligned and aligned
turbulence, are also applicable to Pm�1 for inertial scales
where nonlinear processes dominate. The transfer rates for
unaligned turbulence, T��k�=E��k��1/3k5/3, may also be rep-
resented in the original v and B variables as

Tv�k� = Ev�k��1/3k5/3, �17�

TB�k� = EB�k��1/3k5/3 �k � k�un
� , �18�

where k�un
is the wavenumber at which the resistive dissipa-

tion rate becomes equal to the nonlinear time scale, when
turbulence is not aligned. It will be derived in the next sec-
tion from the spectrum forms. Equations �17� and �18� can be
obtained by transformation from T� assuming balanced tur-
bulence �E+=E−�, or from the hydrodynamic closure of Eqs.
�6� and �7�, with B2→EB�k�k, v2→Ev�k�k, and taking B2

=v2 in the second nonlinearity of Eq. �6�.
In the dissipation range, the magnetic field is dissipated

at a rate that exceeds the transfer rate, while the flow remains
inertial. This results in B�v. The dynamics are no longer
Alfvénic but resemble Navier–Stokes turbulence for the flow.
Magnetic field dynamics are parasitic on the flow, but not
through Alfvénic interactions. The closure must reflect the
different physics of this regime. With B�v there is no ad-
vantage conferred by Elsässer variables, hence we use the
standard MHD fields. For B�v, the dimensional forms of Tv
and TB from Eqs. �6� and �7� become Tv�k�=v3k and TB

=B2vk. Because Tv�k� is purely kinetic and dominates trans-
fer, kinetic energy continues in its inertial range. This makes
Eq. �17� valid not just for k�k�un

but for all k. Under the
hydrodynamic prescription the factor B2 in the magnetic
transfer rate TB is replaced by EB�k�k. This is essentially a
local representation of turbulent interactions between
coupled Fourier modes because TB is treated as a function of
a single wavenumber k. For isotropic and homogeneous hy-
drodynamic turbulence, this is a reasonable approximation.
Magnetic turbulence, on the other hand, has significant non-
local interactions associated with Alfvénic dynamics. Such
nonlocal interactions involving B lead to a known regime of
11/3 power law falloff for magnetic energy in the range be-
tween resistive and viscous Kolmogorov wavenumbers.13,14

To see how this regime arises consider the magnetic non-
linearity of Eq. �3�, �v ·��B− �B ·��v→ ivk� · �k−k��Bk−k�
− iBk� · �k−k��vk−k�. The field Bk� can be a large-scale field in
the inertial range k�k�un

, with vk−k� a flow field in the range
k�un

�k�k�un
, where k�un

is the viscous Kolmogorov scale.
�Like k�un

, the definition of k�un
will emerge naturally from

the spectrum forms derived in the next section.� With this
nonlocal interaction Bk� · �k−k��vk−k� dominates the contri-
bution vk� · �k−k��Bk−k� because Bk−k��vk−k�, while Bk�

vk�. For the same reason this interaction dominates contri-
butions from local triads in the range k�un

�k�k�un
. Balanc-

ing this nonlinearity with dissipation,

082305-4 P. W. Terry and V. Tangri Phys. Plasmas 16, 082305 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp



Bk� · �k − k��vk−k� 
 �Bk� · k�vk 
 �k2Bk. �19�

This leads directly to the spectrum

EB�k� =
Bk

2

k
=

Bk�
2

�2k2�vk
2

k
� =

Bk�
2

�2k2Ev�k� =
�2/3Bk�

2

�2k11/3 , �20�

where Ev�k� is the inertial range spectrum for the flow. We
used �2/3k−5/3 for the flow spectrum because, with B�v, the
flow is governed by shear straining ��v ·��v� and is therefore
essentially the flow of Navier–Stokes turbulence. The spec-
trum of Eq. �20� supplants the inertial range spectrum for
k�un

�k�k�un
. These expressions will be seen to be equiva-

lent to the standard expressions derived from the usual bal-
ance of eddy turnover and dissipation rates.

The above analysis can be extended beyond k�un
�k

�k�un
to the viscous dissipation range k�k�un

. Transfer of
flow energy is governed by Tv=v3k with v3→ �Ev�k�k�
���1/3 /k1/3�. In the hydrodynamic closure this gives Tv�k�
=Ev�k��1/3k5/3, reproducing Eq. �17�. This expression will be
used in Eq. �4� in the next section to obtain the spectrum for
Ev�k�. To obtain EB the hydrodynamic procedure must be
modified to incorporate the nonlocal interaction leading to
Eq. �20�. The spectrum is no longer determined from Eq. �5�,
but is obtained from the same balance leading to Eq. �20�,
which we write as

TB�k� = �k2Bk
2. �21�

Here TB�k� is evaluated using the nonlocal triad leading to
Eq. �20�, i.e.,

TB�k� = BkBk�kvk = BkBk�k�Ev�k�k�1/2. �22�

Because k�k�un
is a dissipation range for both kinetic and

magnetic energies, Ev�k� is not the inertial range spectrum
used in Eq. �20�, but is the dissipation range spectrum ob-
tained from the solution of Eq. �4� with Eq. �17�.

The kinetic energy transfer rate �Eq. �17�� is the same as
the transfer rates for unaligned turbulence derived in the pre-
vious subsection. However, alignment or lack thereof is not
what fixes its form. Rather, it follows from the Obukov bal-
ance when the energy containing field is v, as it must be for
v�B. Nevertheless, if turbulence is unaligned in the inertial
range, k�k�un

, the identical form of Tv�k� for k�k�un
will

give identical spectra in both regions. If, however, the turbu-
lence is aligned in the inertial range, the flow spectrum will
have different power-law factors below and above the resis-
tive Kolmogorov wavenumber. This wavenumber, in turn,
will be indexed to aligned inertial behavior.

Turbulence with Pm=1 is characterized by either sheet-
like or filamentlike structures, depending on alignment. Both
types of structure are oriented along the guide field. For
Pm�1 these two possibilities also arise, but only for the
inertial scales. Beyond the resistive Kolmogorov scale, fluid
streaming ��v ·��v� dominates the nonlinear dynamics re-
sponsible for carrying energy to smaller scale, producing the
filamentary structures of Navier–Stokes turbulence. The
weak magnetic field at these scales is slaved to the flow
through Eq. �19� and does not act back on the flow. There-
fore these filaments, while they carry a field, become dy-

namically independent from it and do not align with the
guide field. These filaments are the characteristic structures
of both v and B beyond the resistive Kolmogorov scale.

C. Pm>1

For Pm�1 there is a range for which v decays exponen-
tially while B remains subject to inertial transfer, resulting in
v�B. The dimensional treatment of Eqs. �6� and �7� yields
Tv=TB=B2vk. The equality of Tv and TB overconstrains the
attenuation balances �Eqs. �4� and �5�� when ���. More-
over, the differences between Tv and TB in Eqs. �6� and �7�
are not amenable to the same simple nonlocal dimensional
analysis that was used for Pm�1. Rather the range between
the viscous and resistive Kolmogorov wavenumbers can be
treated as a problem in passive advection.31 The analysis has
been done, leading to a magnetic spectrum that decays as
k−1.10 However for the range above the resistive Kolmogorov
wavenumber it is not clear how to incorporate the exponen-
tial correction using any of the heuristic approaches of this
paper. The more complex closure analysis required will be
treated in the future.

III. DISSIPATION RANGE SPECTRA

The closed energy transfer expressions obtained in the
previous section can now be used to derive spectra. We con-
sider separately the regimes for Pm=1 and Pm�1. Within
those parametrizations we also consider both unaligned and
scale-dependent aligned turbulence. Growing evidence fa-
vors the latter, but we also do the former because it is a
simpler extension from Navier–Stokes turbulence and in-
forms the considerations necessary for the aligned case.

A. Pm=1

1. Unaligned turbulence

For unaligned turbulence the spectra are obtained from
Eqs. �9� and �11�, which yield the differential equation,

− 2�E��k�k2 =
d

dk
�E��k��1/3k5/3� . �23�

The solution of this equation is E��k�=a�2/3k−5/3

�exp�−�3 /2��k4/3 /�1/3�, where a is a constant of integration.
If we put the argument of the exponent in the form �−�3 /2�
��k /k�un

�4/3�, we obtain

E��k� = a�2/3k−5/3 exp�−
3

2� k

k�un

�4/3� �unaligned� ,

�24�

with

k�un
=

�1/4

�3/4 . �25�

We recognize this parameter combination as the Kolmogorov
wavenumber of Navier–Stokes turbulence, with � in the
place of � ��=� for Pm=1�. Solution of the wavenumber
attenuation balances of Eqs. �4� and �5� generally has the
property that the Kolmogorov wavenumber is recovered
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from the dimensional scaling of the exponential factor. This
is true for both unaligned and aligned cases.

2. Aligned turbulence

For aligned turbulence Eqs. �9�, �15�, and �16� yield

− 2�E��k�k2 =
d

dk
�E��k��1/2k3/2

VA
1/2 � �k � k�al

� , �26�

− 2�E��k�k2 =
d

dk�E��k��1/2k5/3

VA
1/2k�al

1/6 � �k � k�al
� . �27�

The solution of Eq. �26� is E��k�=a��1/2VA
1/2k−3/2

�exp�−�4 /3��k3/2VA
1/2 /�1/2�, where a� is a constant of inte-

gration. We again introduce a wavenumber k�al
as the param-

eter combination that puts the argument of the exponent of
E� in the form �−�4 /3��k /k�al

�3/2�. This yields

k�al
=

�1/3

VA
1/3�2/3 . �28�

This is identical to the Kolmogorov wavenumber for aligned
turbulence derived in the usual way. �The usual derivation
sets the nonlinearity equal to the dissipative term, including
depletion due to alignment. The inertial range spectrum
power law is used to specify the wavenumber dependence of
the amplitude. The expression is then solved for wavenum-
ber.� In terms of k�al

the spectrum is given by

E��k� = a��1/2VA
1/2k−3/2 exp�−

4

3� k

k�al

�3/2� �k � k�al
� .

�29�

The solution of Eq. �27� is E��k�=a�k−5/3

�exp�−�3 /2��k4/3VA
1/2k�al

1/6 /�1/2�, where a� is a second con-
stant of integration. The expression for k�al

defined above
also puts the argument of the exponent in the consistent form
�−3 /2�k /k�al

�4/3�. The constant a� is chosen to make the two
spectra derived for k�k�al

and k�k�al
continuous at k

=k�al
, yielding

E��k� = a��1/2VA
1/2k−5/3k�al

1/6e1/6 exp�−
3

2� k

k�al

�4/3�
�k � k�al

� . �30�

Spectrum for turbulence with Pm=1 in the unaligned �Eq.
�24�� and aligned �Eqs. �29� and �30�� cases is plotted in
Fig. 1.

Note that the dissipation range spectrum for aligned tur-
bulence �k�k�al

� has the same form as the spectrum for
unaligned turbulence. This means that Eq. �30� is the spec-
trum form whenever the alignment angle does not vary with
k, whether it is given by 	 /2 �unaligned turbulence� or some
smaller value giving a depletion of the nonlinearity. This
form therefore accommodates filamentlike or sheetlike struc-
tures, but the structures do not change their transverse aspect
ratio with scale. The inertial range form for aligned turbu-
lence �k�k�al

� is the form resulting whenever the alignment
angle decreases with k as the 1/4 power. Consequently in the

hypothetical case in which 
k�k−1/4 extends through the
whole spectrum, Eq. �29� is the spectrum for aligned turbu-
lence for all wavenumbers.

Both of these spectra can be obtained heuristically by
computing the amount of dissipation in an eddy turnover
time. To show this, recall that the energy dissipation rate � is
the scale-invariant energy transfer rate throughout the inertial
range ��=T=kv3=kB3�. We estimate how much of this trans-
ferred energy is lost to dissipation in an eddy turnover time
by calculating the time evolution of resistive decay at wave-
number k in decaying turbulence. Under pure resistive decay

B2 = B0
2 exp�− 2�k2t� . �31�

For unaligned turbulence the eddy turnover time is �
= �vk�−1=�−1/3k−2/3. In this time B0

3 decays to B0
3

�exp�−3�k4/3�−1/3�, and �, as a decreasing energy through-
put rate, becomes �=kB3=kB0

3 exp�−3�k4/3�−1/3�=�0

�exp�−3�k4/3�−1/3�. In an inertial range with an attenuating
value of � as just calculated this gives a spectrum
E �k� = �2/3 k−5/3 = �0

2/3 k−5/3 exp �−2 � k4/3 �−1/3� = �0
2/3 k−5/3

�exp �−2�k /k�un
�4/3�. This spectrum is not identical to that of

Eq. �24�, but it has the same wavenumber dependence
�k /k�un

�4/3 in the argument of the exponential. Hence that
dependence is a representation of transferable energy loss in
an eddy turnover time. For turbulence with scale dependent
alignment �k�k�al

� the eddy turnover time is �= �vk
k�−1

= ��1/4VA
1/4 /k1/4�−1k−1��1/4 /VA

3/4k1/4�−1=VA
1/2 /�1/2k1/2. When

this is substituted into Eq. �31�, B2=B0
2

�exp�−2�VA
1/2k3/2�1/2�=B0

2 exp�−2�k /k�al
�3/2�, and �

= B3k
k = B0
3k
k exp �−3�k /k�al

�3/2� = �0 exp �−3�k /k�al
�3/2�.

When this is used in the aligned inertial spectrum E�k�
=�1/2VA

1/2k−3/2, the result is E�k�=�0
1/2VA

1/2k−3/2 exp�−�3 /2�
��k /k�al

�3/2�. Again, the wavenumber dependence of the ar-
gument of the exponential in Eq. �29� is recovered.

While this heuristic derivation obviously replicates the
mathematical content of the earlier derivation, it is useful in
clarifying the reason for the different powers of k in the
exponential functions for the cases with and without scale-
dependent alignment. Because the depletion of the nonlinear-
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FIG. 1. �Color online� Spectra for aligned MHD turbulence �labeled Eal�
and unaligned MHD turbulence �labeled Eun� for a magnetic Prandtl number
of unity. The spectra extend from the inertial range to the dissipation range
with kun=177.8 and kal=100 �in arbitrary units�. The aligned turbulence has
an alignment angle that decreases with k for k�kal and becomes constant
thereafter.
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ity increases with scale, scale-dependent aligned turbulence
decays more gradually in the inertial range than unaligned
turbulence �k−3/2 instead of k−5/3�. However the depleted non-
linearity makes the eddy turnover time longer for turbulence
with scale-dependent alignment ���k−1/2 instead of ��k−2/3�.
Consequently there is more dissipation in an eddy turnover
time, and a steeper exponential falloff.

B. Pm<1

For this regime the spectra beyond the resistive Kolmog-
orov wavenumber will look like those of unaligned turbu-
lence. As discussed in the previous section this is because the
Lorentz force becomes negligible, leading to a Kolmogorov
spectral index for the flow �unaligned turbulence also fol-
lows a Kolmogorov spectral index because of critical
balance12�. The case for unaligned turbulence is therefore
simpler because spectrum forms for unaligned turbulence ap-
ply on either side of the dissipative wavenumber.

1. Unaligned turbulence

The kinetic energy transfer rate of unaligned turbulence
is given by Eq. �17� for all wavenumbers. Substituting into
Eq. �4� and solving the differential equation gives

Ev�k� = a��2/3k−5/3 exp�−
3

2� k

k�un

�4/3� , �32�

where k�un
is the combination of parameters given by

k�un
=

�1/4

�3/4 . �33�

Likewise, substitution of the magnetic energy transfer rate of
Eq. �18� into Eq. �5� yields

EB�k� = a��2/3k−5/3 exp�−
3

2� k

k�un

�4/3� �k � k�un
� ,

�34�

where k�un
is given by Eq. �25�. Equation �32� is valid for all

k, whereas Eq. �34� holds only for k�k�un
. To calculate the

magnetic spectrum for k�k�un
we solve Eq. �21�, using the

nonlocal expression for the transfer rate �Eq. �22�� and the
kinetic energy spectrum, Eq. �32�. The result is EB�k�
=a��2/3k−5/3�Bk�

2 /�2k2��exp�−�3 /2��k /k�un
�4/3�. The factor

Bk�
2 is the magnetic energy from some inertial scale k�. This

factor is part of the balance �Bk� ·k�vk
�k2Bk that mediates
the 11/3 power law falloff of Bk

2 above the resistive dissipa-
tion scale. The 11/3 power law ensures that the balance holds
throughout the range k�k�un

. The scale k� of Bk� sets the
amplitude of the spectrum for a given value of �. The only
constraint on the amplitude is continuity of EB across k
=k�un

. Choosing Bk�
2 accordingly, the spectrum can be written

EB�k� = a��2/3k−11/3k�un

2 exp�−
3

2
�1 − Pm��

�exp�−
3

2� k

k�un

�4/3� �k � k�un
� . �35�

Exponential falloff in the magnetic spectrum is governed by
resistivity for k�k�un

, whereas for k�k�un
, nonlocal interac-

tions produce an exponential falloff governed by viscosity,
with resistivity entering through the factor k�un

2 . The spectra
of Ev and EB for unaligned turbulence are shown in Fig. 2 for
a case in which k�un

=100, k�un
=10, and Pm= �0.1�4/3=4.64

�10−2. Even with only one decade between the resistive and
viscous Kolmogorov scales, the magnetic energy becomes
significantly smaller in the dissipative scales.

2. Aligned turbulence

Scale-dependent alignment is a property of inertial inter-
actions, even though its observation in simulations has gen-
erally been for Pm=1. When Pm�1, the magnetic field is
dissipated more strongly than the flow, resulting in B�v,
even in the inertial range. However, the difference is very
small in the inertial range. Therefore, alignment should occur
much as it does in the Pm=1 case. For Pm=1, the aligned
spectra are given by Eq. �29� in the inertial scales k�k�al

. If
we assume balanced turbulence for simplicity �E+�k�
=E−�k��, the spectra for Ev�k� and EB�k� are the same as
those of E��k� given in Eq. �29�,

Ev�k� = EB�k�

= a��1/2VA
1/2k−3/2 exp�−

4

3� k

k�al

�3/2�
�k � k�al

, Pm = 1� . �36�

For Pm�1, these spectra have the appropriate form, but Ev
and EB are subject to the different dissipation rates k2� and
k2�. This requires different dissipative wavenumbers for Ev
and EB. These should have the scaling of dissipative wave-
numbers for aligned turbulence, giving
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FIG. 2. �Color online� Spectra of magnetic and kinetic energies for un-
aligned turbulence with Pm=0.0464. The resistive and viscous Kolmogorov
wavenumbers are k�un

=10 and k�un
=100 �in arbitrary units�.
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Ev�k� = a��1/2VA
1/2k−3/2 exp�−

4

3� k

k�al

�3/2� �k � k�al
� ,

�37�

EB�k� = a��1/2VA
1/2k−3/2 exp�−

4

3� k

k�al

�3/2� �k � k�al
� .

�38�

Here k�al
is given by Eq. �28� and

k�al
=

�1/3

VA
1/3�2/3 . �39�

With k�al
�k�al

the exponential correction for Ev is much
closer to unity than the already near-unity exponential cor-
rection for EB.

We now consider the range k�k�al
. The flow is gov-

erned solely by the nonlinearity ��v ·��v�. When the corre-
sponding kinetic energy transfer rate �Eq. �17�� is substituted
into Eq. �4�, we obtain the differential equation
d /dk�Evk�1/3k1/3�=−2�Ev�k�k2. The solution gives Ev�k�
=a��2/3k−5/3 exp�−�3 /2��k /k�un

�4/3�, where a� is an integra-
tion constant and k�un

is the parameter combination in the
argument of the exponential given by Eq. �33�. We choose
a� to make the spectrum continuous across k=k�al

, yielding

Ev�k� = a��1/2VA
1/2k�al

1/6k−5/3 exp�−
4

3
Pm +

3

2� k�al

k�un

�4/3�
�exp�−

3

2� k

k�un

�4/3� �k � k�al
� . �40�

The wavenumber ratio k�al
/k�un

is a dimensionless combina-
tion of parameters given by

k�al

k�un

=
�3/4�1/12

�2/3VA
1/3 = Pm3/4
k�al

1/2 , �41�

where 
k�al
is the alignment angle 
k �Eq. �13�� evaluated at

the wavenumber k�al
that terminates the inertial range. This

ratio is small since both Pm and 
k are less than unity.
The spectrum for magnetic energy is obtained from Eqs.

�21� and �22�. We obtain both the known 11/3 power law
spectrum for the range k�al

�k�k�un
and the exponential

correction that makes the spectrum valid for k�k�un
by us-

ing Eq. �40� for Ev�k� in Eq. �22�. The result is

EB�k� = a��1/2VA
1/2k�al

1/6� Bk�
2

�2k11/3�exp�−
4

3
Pm +

3

2� k�al

k�un

�4/3�
�exp�−

3

2� k

k�un

�4/3� �k � k�al
� . �42�

As in the unaligned case, the inertial scale k� that appears in
�Bk� ·k�vk
�k2Bk maintains continuity of the spectrum, al-
lowing the spectrum to be rewritten as

EB�k� = a��1/2VA
1/2k�al

13/6k−11/3 exp�−
4

3
+

3

2� k�al

k�un

�4/3�
�exp�−

3

2� k

k�un

�4/3� �k � k�al
� . �43�

The spectra for Ev and EB have power laws of k−5/3 and
k−11/3, respectively, with the same exponential falloff gov-
erned by viscous dissipation. There is no exponential decay
related to resistive dissipation because nonlocal interactions
with the flow produce the 11/3 power law falloff in the range
where resistive dissipation is active. The resistive Kolmog-
orov wavenumber does enter the EB spectrum through an
additional amplitude factor k�al

2 . For k�k�un
kinetic energy is

dissipated on a shorter time scale than nonlinear interactions
and all energies decay exponentially. The two spectra are
plotted in Fig. 3 for the same parameters as Fig. 2, i.e.,
k�un

=100, k�un
=10, and Pm=4.64�10−2. Additionally,


k�al
=0.30, yielding k�al

= �
k�al
�1/2k�un

=5.48 and k�al

= �k�un
/k�un

�1/9�
k�al
�1/2k�un

=42.41. Aside from obvious dif-

ferences in spectra for the Pm=1 and Pm�1 cases, there is
not a significant difference in spectra for aligned and un-
aligned turbulence with the same magnetic Prandtl number.

IV. CONCLUSIONS

We derived turbulent dissipation range spectra for MHD
with isotropic viscosity and resistivity using simple closures.
We focused on the physics associated with variation of mag-
netic Prandtl number and alignment of the magnetic and ve-
locity vectors to determine the appropriate exponential spec-
tra that modify power law behavior arising from these
effects. Dissipation range spectra have a subrange of expo-
nential falloff beyond the effective Kolmogorov wavenum-
ber. For dimensional reasons the argument of the exponent
depends only on physical parameters in the form k /kdis,
where kdis is a Kolmogorov wavenumber associated with vis-
cosity or resistivity. The power to which this ratio is raised
depends on the rate of spectral energy transfer by the non-
linearity, which in MHD is sensitive to the degree of scale
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FIG. 3. �Color online� Spectra of magnetic and kinetic energies for aligned
turbulence with Pm=0.0464. These spectra depend on resistive and viscous
Kolmogorov wavenumbers for both aligned and unaligned turbulence.
These wavenumbers are k�un

=10, k�un
=100, k�al

=5.48, and k�un
=42.41 �in

arbitrary units�.
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dependent alignment between fields, and hence the nature of
the fluctuation anisotropy. From hydrodynamic theory it is
also known that the power of the exponent depends on the
way the cubic correlation of the spectral transfer rate is
closed to form a representation in terms of quadratic spec-
trum correlations. This work addressed the effect of different
values of the magnetic Prandtl number and the differences in
spectra corresponding to aligned turbulence, which has iner-
tial sheetlike fluctuation structure and unaligned turbulence,
which has inertial filamentlike structure.

Dissipation range spectra have been formulated for tur-
bulence that is both aligned and unaligned for the inertial
scales that feed the dissipation range. For unaligned turbu-
lence with Pm=1, the inertial power law �2/3k−5/3 is corrected
by an exponential factor exp�−�3 /2��k /k�un

�4/3�, valid for all
k, that dominates falloff when the wavenumber exceeds the
Kolmogorov wavenumber k�un

=�1/4 /�3/4. For aligned turbu-
lence with Pm=1 �scale-dependent alignment�, the inertial-
range power law is �1/2VA

1/2k−3/2. The weaker nonlinearity
allows more dissipation in a nonlinear spectral transfer time,
yielding a stronger exponential correction exp�−�4 /3�
��k /k�al

�3/2� in the inertial range k�k�al
, where k�al

=�1/3 /VA
1/3�1/3. In the dissipation range k�k�al

, simulations
indicate that the alignment angle ceases to decrease with k
but is frozen at its value for k=k�al

. Hence for this range, the
turbulence, while aligned, is scale independent and spectral
decay has the same wavenumber variation as unaligned tur-
bulence, with factors of k−5/3 and exp�−�3 /2��k /k�un

�4/3�.
Equal dissipation of magnetic and kinetic energies carries
inertial structures into the dissipation range unaltered in
shape.

For Pm�1 we have derived spectra that describe the
transition from the inertial to the dissipation range for turbu-
lence with and without scale-dependent alignment. In both
cases, the small-scale limit has exponential falloff governed
by viscous dissipation with a form characteristic of un-
aligned structure, exp�−�3 /2��k /k�un

�4/3�. This reflects turbu-
lence that is essentially Kolmogorov with a parasitic mag-
netic field. Hence, there is a power law factor of k−5/3 for the
kinetic energy and k−11/3 for magnetic energy. Alignment
only affects the spectrum in the inertial range, resulting in
different large-scale asymptotes for aligned and unaligned
turbulence. These include the characteristic power law fac-
tors of k−3/2 and k−5/3 for aligned and unaligned turbulence.
For magnetic energy the corresponding exponential correc-
tion factors are exp�−�4 /3��k /k�al

�3/2� and exp�−�3 /2�
��k /k�un

�4/3�, respectively, reflecting differing amounts of
dissipation in a transfer time scale. The exponential factors
of large-scale behavior for the kinetic energy are the same
but with the viscous wavenumbers k�al

and k�un
in place of

the resistive wavenumbers. The details of these spectral
forms are less significant than the general insight that align-
ment and differences in dissipation rates lead to differences
in dissipation range spectra, including Kolmogorov wave-
numbers.

The Madison Symmetric Torus �MST� reversed field
pinch32 has magnetic turbulence that is relevant to the Pm
�1 limit. �The magnetic Prandtl number in MST is on the

order of 0.01 for the viscosity associated with diffusion of
perpendicular flow in the direction perpendicular to the mean
field, as calculated from the appropriate components of the
Braginskii pressure tensor for MST parameters.� An expo-
nential spectrum has been observed using magnetic probes.33

However, the entire spectrum covers a range of scales that
are considerably larger than the resistive Kolmogorov scale
�using either k�al

or k�un
as an estimate�. Because cyclotron

resonances do fall within the spectrum, the exponential be-
havior may result from kinetic dissipation.33,34 These issues
will be considered elsewhere. Dissipation range spectra for
Pm�1 is also left to future work.
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